Measuring the behavioural effects of tax changes
Lecture 2 Labour Supply Responses

Richard Blundell
University College London

March 2010
A brief look at optimal design of earnings taxation
A brief look at optimal design of earnings taxation

- top tax rates and the taxable income elasticity
A brief look at optimal design of earnings taxation

- top tax rates and the taxable income elasticity
- the tax rate schedule and labour supply elasticities
Earnings Tax Design

- A brief look at optimal design of earnings taxation
 - top tax rates and the taxable income elasticity
 - the tax rate schedule and labour supply elasticities
 - the importance of the extensive margin
Earnings Tax Design

- A brief look at optimal design of earnings taxation
 - top tax rates and the taxable income elasticity
 - the tax rate schedule and labour supply elasticities
 - the importance of the extensive margin
- Evaluating the impact:
Earnings Tax Design

- A brief look at optimal design of earnings taxation
 - top tax rates and the taxable income elasticity
 - the tax rate schedule and labour supply elasticities
 - the importance of the extensive margin

- Evaluating the impact:
 - social experiments
Earnings Tax Design

- A brief look at optimal design of earnings taxation
 - top tax rates and the taxable income elasticity
 - the tax rate schedule and labour supply elasticities
 - the importance of the extensive margin
- Evaluating the impact:
 - social experiments
 - quasi-experiments
A brief look at optimal design of earnings taxation
- top tax rates and the taxable income elasticity
- the tax rate schedule and labour supply elasticities
- the importance of the extensive margin

Evaluating the impact:
- social experiments
- quasi-experiments
- structural models
Earnings Tax Design

- A brief look at optimal design of earnings taxation
 - top tax rates and the taxable income elasticity
 - the tax rate schedule and labour supply elaticities
 - the importance of the extensive margin

- Evaluating the impact:
 - social experiments
 - quasi-experiments
 - structural models

- Implications for design
Earnings Tax Design

- A brief look at optimal design of earnings taxation
 - top tax rates and the taxable income elasticity
 - the tax rate schedule and labour supply elasticities
 - the importance of the extensive margin

- Evaluating the impact:
 - social experiments
 - quasi-experiments
 - structural models

- Implications for design

- Dynamics
Earnings Tax Design

- A brief look at optimal design of earnings taxation
 - top tax rates and the taxable income elasticity
 - the tax rate schedule and labour supply elasticities
 - the importance of the extensive margin

- Evaluating the impact:
 - social experiments
 - quasi-experiments
 - structural models

- Implications for design

- Dynamics

- Families
Follow the ‘optimal tax design’ approach due to Mirrlees (1971).
Follow the ‘optimal tax design’ approach due to Mirrlees (1971).

In this framework a tax schedule is chosen that will maximise social welfare and raise a required amount of revenue.
Follow the ‘optimal tax design’ approach due to Mirrlees (1971).

In this framework a tax schedule is chosen that will maximise social welfare and raise a required amount of revenue.

In this framework identical people vary in their earnings by choosing how much productive effort to supply.
Follow the ‘optimal tax design’ approach due to Mirrlees (1971).

In this framework a tax schedule is chosen that will maximise social welfare and raise a required amount of revenue.

In this framework identical people vary in their earnings by choosing how much productive effort to supply.

The government cannot observe effort, only earnings. So can’t distinguish a high ability person working few hours from a low ability person working a large amount.
Follow the ‘optimal tax design’ approach due to Mirrlees (1971).

In this framework a tax schedule is chosen that will maximise social welfare and raise a required amount of revenue.

In this framework identical people vary in their earnings by choosing how much productive effort to supply.

The government cannot observe effort, only earnings. So can’t distinguish a high ability person working few hours from a low ability person working a large amount.

So has to balance redistributive aims with effort incentives. If it taxes the high ability types too much they may choose to supply much less effort. Thus we need to know supply elasticities.
We consider the different ways in which a small increase in the top rate affects social welfare.
We consider the different ways in which a small increase in the top rate affects social welfare.

We assume that this top rate applies to earnings above a given level, and we will refer to this level as the top bracket.
We consider the different ways in which a small increase in the top rate affects social welfare.

We assume that this top rate applies to earnings above a given level, and we will refer to this level as the top bracket.

There are three impacts on social welfare:

- Mechanical effect on tax revenue
- Behavioural response on tax revenue
- Welfare effect, and it is a loss to society. How large is this loss depends on the redistributive tastes of the government.
We consider the different ways in which a small increase in the top rate affects social welfare.

We assume that this top rate applies to earnings above a given level, and we will refer to this level as the top bracket.

There are three impacts on social welfare:

- **mechanical effect** on tax revenue
We consider the different ways in which a small increase in the top rate affects social welfare.

We assume that this top rate applies to earnings above a given level, and we will refer to this level as the top bracket.

There are three impacts on social welfare:

- **mechanical effect** on tax revenue
- **behavioural response** on tax revenue
We consider the different ways in which a small increase in the top rate affects social welfare.

We assume that this top rate applies to earnings above a given level, and we will refer to this level as the top bracket.

There are three impacts on social welfare:

- *mechanical effect* on tax revenue
- *behavioural response* on tax revenue
- *welfare effect*, and it is a loss to society. How large is this loss depends on the redistributive tastes of the government.
• With no behavioural response, increasing the top rate will increase government revenue. This is the mechanical effect on tax revenue, and this is a benefit to society, as the revenue can be used for government spending or higher transfers.

Increasing the top rate may also induce top bracket taxpayers to reduce their earnings (but not below the top bracket, because nothing has changed below this point) because of the substitution effect described above. This is known as the behavioural response on tax revenue, and it is a cost to society as tax revenues will fall.

Finally, any increase in the top rate will reduce the welfare of top bracket taxpayers. This is the welfare effect, and it is a loss to society.

If the government values redistribution, then, for incomes above a certain level, it will consider that the marginal value of income is small. In the limit, the welfare effect will be negligible relative to the mechanical effect on tax revenue.
• With no behavioural response, increasing the top rate will increase government revenue. This is the mechanical effect on tax revenue, and this is a benefit to society, as the revenue can be used for government spending or higher transfers.

• Increasing the top rate may also induce top bracket taxpayers to reduce their earnings (but not below the top bracket, because nothing has changed below this point) because of the substitution effect described above. This is known as the behavioural response on tax revenue, and it is a cost to society as tax revenues will fall.

• Finally, any increase in the top rate will reduce the welfare of top bracket taxpayers. This is the welfare effect, and it is a loss to society.
• With no behavioural response, increasing the top rate will increase government revenue. This is the mechanical effect on tax revenue, and this is a benefit to society, as the revenue can be used for government spending or higher transfers.

• Increasing the top rate may also induce top bracket taxpayers to reduce their earnings (but not below the top bracket, because nothing has changed below this point) because of the substitution effect described above. This is known as the behavioural response on tax revenue, and it is a cost to society as tax revenues will fall.

• Finally, any increase in the top rate will reduce the welfare of top bracket taxpayers. This is the welfare effect, and it is a loss to society. If the government values redistribution, then, for incomes above a certain level, it will consider that the marginal value of income is small. In the limit, the welfare effect will be negligible relative to the mechanical effect on tax revenue.
Consider a reform that changes the top tax rate τ by a small amount $d\tau$. Let z be the earned income being considered for taxation. The top bracket begins at income z. Assume there are N taxpayers in the top bracket.

Mechanical effect of higher marginal tax rate on incomes above z^*:

$$dM = N \left[\frac{z}{z^*} \right] d\tau > 0$$

Behavioural effect will depend on the elasticity e – the elasticity of earnings with respect to the net of tax rate $(1 - \tau)$. Reported income will be reduced by $dz = ezd\tau / (1 - \tau)$. Hence revenue will be reduced by $dB = Nezd\tau / (1 - \tau)$.
• Consider a reform that changes the top tax rate τ by a small amount $d\tau$
• Let z be the earned income being considered for taxation

Mechanical effect of higher marginal tax rate on incomes above z^*:
$$dM = N \left[\frac{z}{z} \right] d\tau > 0$$

Behavioural effect will depend on the elasticity e – the elasticity of earnings with respect to the net of tax rate $(1 - \tau)$. Reported income will be reduced by
$$dz = ezd\tau / (1 - \tau)$$

Hence revenue will be reduced by
$$dB = Nezd\tau / (1 - \tau)$$
Consider a reform that changes the top tax rate \(\tau \) by a small amount \(d\tau \).

Let \(z \) be the earned income being considered for taxation.

The top bracket begins at income \(z^* \).
Consider a reform that changes the top tax rate τ by a small amount $d\tau$

Let z be the earned income being considered for taxation

The top bracket begins at income z^*

Assume there are N taxpayers in the top bracket
Consider a reform that changes the top tax rate τ by a small amount $d\tau$

Let z be the earned income being considered for taxation

The top bracket begins at income z^*

Assume there are N taxpayers in the top bracket

Mechanical effect of higher marginal tax rate on incomes above z^*:

$$dM = N[z - z^*]d\tau > 0$$
Consider a reform that changes the top tax rate τ by a small amount $d\tau$

Let z be the earned income being considered for taxation

The top bracket begins at income z^*

Assume there are N taxpayers in the top bracket

Mechanical effect of higher marginal tax rate on incomes above z^*:

$$dM = N[z - z^*]d\tau > 0$$

Behavioural effect will depend on the elasticity e – the elasticity of earnings with respect to the net of tax rate $(1 - \tau)$. Reported income will be reduced by

$$dz = -ezd\tau / (1 - \tau)$$
Consider a reform that changes the top tax rate τ by a small amount $d\tau$

Let z be the earned income being considered for taxation

The top bracket begins at income z^*

Assume there are N taxpayers in the top bracket

Mechanical effect of higher marginal tax rate on incomes above z^*:

$$dM = N[z - z^*]d\tau > 0$$

Behavioural effect will depend on the elasticity e – the elasticity of earnings with respect to the net of tax rate $(1 - \tau)$. Reported income will be reduced by

$$dz = -ezd\tau/(1 - \tau)$$

Hence revenue will be reduced by

$$dB = -Nezd\tau.\tau(1 - \tau)$$
Suppose the government value at g, giving $\$1$ extra to a top tax bracket taxpayer – will be strictly less than 1, since the weighted sum of welfare weights is unity.
- Suppose the government value at g, giving 1 extra to a top tax bracket taxpayer – will be strictly less than 1, since the weighted sum of welfare weights is unity.
- Welfare effect of higher marginal tax rate on incomes above z^*:
 \[
 dW = \frac{-gN[z - z^*]d\tau}{1 - \frac{\tau}{(1 - \tau)}} < 0
 \]
Suppose the government value at g, giving $\$1$ extra to a top tax bracket taxpayer – will be strictly less than 1, since the weighted sum of welfare weights is unity.

Welfare effect of higher marginal tax rate on incomes above z^*:

$$dW = -gN[z - z^*]d\tau < 0$$

Summing these we get

$$dM + dB + dW = Nd\tau[z - z^*][1 - g - e.a.\tau/(1 - \tau)]$$

where $a = z/(z - z^*)$.
Suppose the government value at g, giving 1 extra to a top tax bracket taxpayer – will be strictly less than 1, since the weighted sum of welfare weights is unity.

Welfare effect of higher marginal tax rate on incomes above z^*:

$$dW = -gN[z - z^*]d\tau < 0$$

Summing these we get

$$dM + dB + dW = Nd\tau[z - z^*][1 - g - e.a.\tau/(1 - \tau)]$$

where $a = z/(z - z^*)$.

At the optimum this has to be zero

$$\tau^* = \frac{(1 - g)}{(1 - g + a.e)}$$
There are some nice interpretations of this simple formula

\[\tau^* = \frac{(1 - g)}{(1 - g + a.e)} \]
- There are some nice interpretations of this simple formula

\[\tau^* = \frac{(1 - g)}{(1 - g + a \cdot e)} \]

- Note that \(a \) is a parameter of the upper tail of the Pareto distribution

\[f(z) = \frac{c}{z^{(1+a)}} \]

Approximately 1.67 in the recent UK data (figures)
There are some nice interpretations of this simple formula

$$\tau^* = \frac{(1 - g)}{(1 - g + a.e)}$$

Note that a is a parameter of the upper tail of the Pareto distribution

$$f(z) = \frac{c}{z^{(1+a)}}$$

Approximately 1.67 in the recent UK data (figures)

If g is approximately zero then

$$\tau^* = \frac{1}{(1 + a.e)}$$

which is very simple to estimate if we know the taxable income elasticity.
There are some nice interpretations of this simple formula

$$\tau^* = \frac{(1 - g)}{(1 - g + a.e)}$$

Note that a is a parameter of the upper tail of the Pareto distribution

$$f(z) = \frac{c}{z^{(1+a)}}$$

Approximately 1.67 in the recent UK data (figures)

If g is approximately zero then

$$\tau^* = \frac{1}{(1 + a.e)}$$

which is very simple to estimate if we know the taxable income elasticity.

Figures and differences in differences tables.
Here I want to focus on the whole tax schedule including benefits and tax-credits

- It looks at impact and ‘optimal’ design
Here I want to focus on the whole tax schedule including benefits and tax-credits

- It looks at impact and ‘optimal’ design
- Two questions:
Here I want to focus on the whole tax schedule including benefits and tax-credits

- It looks at impact and ‘optimal’ design
- Two questions:
 - How should we measure the impact of benefit, tax and tax-credit reform on work decisions?
Here I want to focus on the whole tax schedule including benefits and tax-credits

- It looks at impact and ‘optimal’ design
- Two questions:
 1. How should we measure the impact of benefit, tax and tax-credit reform on work decisions?
 2. How should we assess the optimal design?
Here I want to focus on the whole tax schedule including benefits and tax-credits

- It looks at impact and ‘optimal’ design
- Two questions:
 1. How should we measure the impact of benefit, tax and tax-credit reform on work decisions?
 2. How should we assess the optimal design?

- Policy context: taxation of low income families in the UK – especially single mothers.
To understand the differences in the impact of the earned income tax credit expansions in the US and the UK
Tax Reform for Low Income Families

- To understand the differences in the impact of the earned income tax credit expansions in the US and the UK
- To take seriously the use of a structural labour supply model in design and evaluation
To understand the differences in the impact of the earned income tax credit expansions in the US and the UK

To take seriously the use of a structural labour supply model in design and evaluation

allowing for fixed costs of work, child-care costs and the detailed non-convexities of the tax and transfer system.
Tax Reform for Low Income Families

- To understand the differences in the impact of the earned income tax credit expansions in the US and the UK
- To take seriously the use of a structural labour supply model in design and evaluation
- Allowing for fixed costs of work, child-care costs and the detailed non-convexities of the tax and transfer system.
- To use quasi-experimental comparisons to assess the reliability of a structural labour supply model.
To understand the differences in the impact of the earned income tax credit expansions in the US and the UK

To take seriously the use of a structural labour supply model in design and evaluation

allowing for fixed costs of work, child-care costs and the detailed non-convexities of the tax and transfer system.

To use quasi-experimental comparisons to assess the reliability of a structural labour supply model.

To consider the case where hours of work are partially observable to the tax authorities and to examine hours contingent designs
To understand the differences in the impact of the earned income tax credit expansions in the US and the UK

To take seriously the use of a structural labour supply model in design and evaluation

allowing for fixed costs of work, child-care costs and the detailed non-convexities of the tax and transfer system.

To use quasi-experimental comparisons to assess the reliability of a structural labour supply model.

To consider the case where hours of work are partially observable to the tax authorities and to examine hours contingent designs

as is (assumed) in the British, Irish and NZ tax credit systems.
Tax Reform for Low Income Families

- To understand the differences in the impact of the earned income tax credit expansions in the US and the UK.
- To take seriously the use of a structural labour supply model in design and evaluation.
- Allowing for fixed costs of work, child-care costs and the detailed non-convexities of the tax and transfer system.
- To use quasi-experimental comparisons to assess the reliability of a structural labour supply model.
- To consider the case where hours of work are partially observable to the tax authorities and to examine hours contingent designs.
- As is (assumed) in the British, Irish and NZ tax credit systems.
- To present (new) tax (-credit) and transfer designs that condition on the age of children.
The first step is a positive analysis of household work decisions. There are **two** empirical approaches - both prove useful:
The first step is a positive analysis of household work decisions. There are two empirical approaches - both prove useful:

1. A ‘quasi-experimental’ evaluation of the impact of historic reform
The first step is a positive analysis of household work decisions. There are two empirical approaches - both prove useful:

1. A ‘quasi-experimental’ evaluation of the impact of historic reform
2. A ‘structural’ estimation based on a general discrete response model with (unobserved) heterogeneity
The first step is a positive analysis of household work decisions. There are two empirical approaches - both prove useful:

1. A ‘quasi-experimental’ evaluation of the impact of historic reform
2. A ‘structural’ estimation based on a general discrete response model with (unobserved) heterogeneity

The second step is the normative analysis or optimal policy analysis.
The first step is a positive analysis of household work decisions. There are two empirical approaches - both prove useful:

1. A ‘quasi-experimental’ evaluation of the impact of historic reform
2. A ‘structural’ estimation based on a general discrete response model with (unobserved) heterogeneity

The second step is the normative analysis or optimal policy analysis: Examines how to best to design benefits, in-work tax credits and income tax rates for low-skilled groups.
Typically credit depends on earnings and number of children:
Typically credit depends on earnings and number of children:

- Phase-in: credit is flat percentage of earned income
General form of Earned Income Tax Credits

- Typically credit depends on earnings and number of children:
- Phase-in: credit is flat percentage of earned income
- Flat range: receive maximum credit
General form of Earned Income Tax Credits

- Typically credit depends on earnings and number of children:
 - Phase-in: credit is flat percentage of earned income
 - Flat range: receive maximum credit
 - Phase-out: credit is phased out at a flat rate
Typically credit depends on earnings and number of children:

- Phase-in: credit is flat percentage of earned income
- Flat range: receive maximum credit
- Phase-out: credit is phased out at a flat rate
- Credit based on family earnings
General form of Earned Income Tax Credits

- Typically credit depends on earnings and number of children:
 - Phase-in: credit is flat percentage of earned income
 - Flat range: receive maximum credit
 - Phase-out: credit is phased out at a flat rate
- Credit based on family earnings
- Creating ‘interesting’ incentives among couples
General form of Earned Income Tax Credits

- Typically credit depends on earnings and number of children:
- Phase-in: credit is flat percentage of earned income
- Flat range: receive maximum credit
- Phase-out: credit is phased out at a flat rate
- Credit based on family earnings
- Creating ‘interesting’ incentives among couples
- Figures on US EITC and implicit marginal tax rates
The UK WFTC - eligibility

- work eligibility
The UK WFTC - eligibility

- work eligibility
 - 16 or more hours per week
The UK WFTC - eligibility

- work eligibility
 - 16 or more hours per week
- family eligibility
The UK WFTC - eligibility

- work eligibility
 - 16 or more hours per week
- family eligibility
 - children (in full time education or younger)
The UK WFTC - eligibility

• work eligibility
 • 16 or more hours per week

• family eligibility
 • children (in full time education or younger)

• income eligibility
The UK WFTC - eligibility

- work eligibility
 - 16 or more hours per week

- family eligibility
 - children (in full time education or younger)

- income eligibility
 - if a family's net income is below a certain threshold, adult credit plus age-dependent amounts for each child
The UK WFTC - eligibility

- **Work eligibility**
 - 16 or more hours per week

- **Family eligibility**
 - Children (in full time education or younger)

- **Income eligibility**
 - If a family's net income is below a certain threshold, adult credit plus age-dependent amounts for each child
 - If income is above the threshold then the amount of credit is tapered away at 55% per extra pound of net income – previously 70%
FC (family credit) in various forms since 1970s, expanded early in 1990s
Earned Income Tax Credit Reforms in the UK

- FC (family credit) in various forms since 1970s, expanded early in 1990s
 - Change in hours-contingent rules 30 \(\rightarrow\) 24 \(\rightarrow\) 16

Blundell (University College London)
Earned Income Tax Credit Reforms in the UK

- FC (family credit) in various forms since 1970s, expanded early in 1990s
 - Change in hours-contingent rules 30 -> 24 -> 16
- WFTC (working families tax credit) reform in 1999/2000, and subsequent expansions in 2002
Earned Income Tax Credit Reforms in the UK

- FC (family credit) in various forms since 1970s, expanded early in 1990s
 - Change in hours-contingent rules 30 -> 24 -> 16
- WFTC (working families tax credit) reform in 1999/2000, and subsequent expansions in 2002
 - influenced by the success of the EITC expansion in the US
FC (family credit) in various forms since 1970s, expanded early in 1990s
 - Change in hours-contingent rules 30 -> 24 -> 16
WFTC (working families tax credit) reform in 1999/2000, and subsequent expansions in 2002
 - influenced by the success of the EITC expansion in the US
 - especially generous to families with young children
How should we assess the impact of such policies?

- Is there a social experiment?
How should we assess the impact of such policies?

- Is there a social experiment?
 - Not for EITC or WFTC (but there is for the Canadian SSP)
Canadian Self Sufficiency Program

- Experimental design
Canadian Self Sufficiency Program

- Experimental design
- Do financial incentives encourage work among low skilled lone parents?
Experimental design

Do financial incentives encourage work among low skilled lone parents?

The aim was to encourage employment among welfare recipients, specifically single parents on welfare.
Experimental design

Do financial incentives encourage work among low skilled lone parents?

The aim was to encourage employment among welfare recipients, specifically single parents on welfare

- 50% earnings supplement – as a tax credit
Experimental design

Do financial incentives encourage work among low skilled lone parents?

The aim was to encourage employment among welfare recipients, specifically single parents on welfare

- 50% earnings supplement – as a tax credit
- at least 30 hours per week job
Experimental design

Do financial incentives encourage work among low skilled lone parents?

The aim was to encourage employment among welfare recipients, specifically single parents on welfare

- 50% earnings supplement – as a tax credit
- at least 30 hours per week job
- On earnings up to an annual limit of $36000
Canadian Self Sufficiency Program

- Experimental design
- Do financial incentives encourage work among low skilled lone parents?
- The aim was to encourage employment among welfare recipients, specifically single parents on welfare
 - 50% earnings supplement – as a tax credit
 - at least 30 hours per week job
 - On earnings up to an annual limit of $36000
- provided to the individual, not the employer, as in EITCs
well designed social experiment
Canadian Self Sufficiency Program

- well designed social experiment
- good research design
Canadian Self Sufficiency Program

- well designed social experiment
- good research design
- Figures
Ex-post evaluation where there is no social experiment:

- comparing work decisions of (potentially) eligible versus those who are not eligible before and after the reform
Ex-post evaluation where there is no social experiment:

- comparing work decisions of (potentially) eligible versus those who are not eligible before and after the reform
- identify average employment impact on eligibles by assuming a structure on unobservables
Ex-post evaluation where there is no social experiment:

- comparing work decisions of (potentially) eligible versus those who are not eligible before and after the reform
- identify average employment impact on eligibles by assuming a structure on unobservables
- separability
Ex-post evaluation where there is no social experiment:

- comparing work decisions of (potentially) eligible versus those who are not eligible before and after the reform
- identify average employment impact on eligibles by assuming a structure on unobservables
- separability
 - common trends across groups
Ex-post evaluation where there is no social experiment:

- comparing work decisions of (potentially) eligible versus those who are not eligible before and after the reform
- identify average employment impact on eligibles by assuming a structure on unobservables
- separability
 - common trends across groups
 - invariance in group heterogeneity over time
Ex-post evaluation where there is no social experiment:

- comparing work decisions of (potentially) eligible versus those who are not eligible before and after the reform
- identify average employment impact on eligibles by assuming a structure on unobservables
- separability
 - common trends across groups
 - invariance in group heterogeneity over time
 - conditional on a set of (matching) covariates X
Ex-post evaluation where there is no social experiment:

- comparing work decisions of (potentially) eligible versus those who are not eligible before and after the reform
- identify average employment impact on eligibles by assuming a structure on unobservables
- separability
 - common trends across groups
 - invariance in group heterogeneity over time
 - conditional on a set of (matching) covariates X
- EITC expansions (Figures)
Ex-post evaluation where there is no social experiment:

- comparing work decisions of (potentially) eligible versus those who are not eligible before and after the reform
- identify average employment impact on eligibles by assuming a structure on unobservables
- separability
 - common trends across groups
 - invariance in group heterogeneity over time
 - conditional on a set of (matching) covariates X
- EITC expansions (Figures)
- WFTC Reform (Figure and Table)
Ex-post evaluation where there is no social experiment:

- comparing work decisions of (potentially) eligible versus those who are not eligible before and after the reform
- identify average employment impact on eligibles by assuming a structure on unobservables
- separability
 - common trends across groups
 - invariance in group heterogeneity over time
 - conditional on a set of (matching) covariates X
- EITC expansions (Figures)
- WFTC Reform (Figure and Table)
- Differences in Differences data and table of impact estimates
Sensitivity analysis

- Choice of pre-treatment years

Results are robust to changing the pre-treatment time window. The hypothetical reform on pre-reform years shows a treatment effect of .07 (.11). How do we square these results with the larger impact on employment in the US? How does the observed effect accord with a decision-making model? What happened to the budget constraint?
Sensitivity analysis

- Choice of pre-treatment years
 - results are robust to changing the pre-treatment time window
Sensitivity analysis

- Choice of pre-treatment years
 - results are robust to changing the pre-treatment time window
 - ‘hypothetical’ reform on pre-reform years

Spring 1997: treatment effect: .07 (.11)

How do we square these results with the larger impact on employment in the US?

How does the observed effect accord with a decision making model?

What happened to the budget constraint?
Sensitivity analysis

Choice of pre-treatment years

- results are robust to changing the pre-treatment time window
- ‘hypothetical’ reform on pre-reform years
- Spring 1997: treatment effect: .07 (.11)
Sensitivity analysis

- Choice of pre-treatment years
 - results are robust to changing the pre-treatment time window
 - ‘hypothetical’ reform on pre-reform years
 - Spring 1997: treatment effect: .07 (.11)

- How do we square these results with the larger impact on employment in the US?
Sensitivity analysis

- **Choice of pre-treatment years**
 - results are robust to changing the pre-treatment time window
 - ‘hypothetical’ reform on pre-reform years
 - Spring 1997: treatment effect: .07 (.11)

- How do we square these results with the larger impact on employment in the US?
- How does the observed effect accord with a decision making model?
Sensitivity analysis

- Choice of pre-treatment years
 - results are robust to changing the pre-treatment time window
 - ‘hypothetical’ reform on pre-reform years
 - Spring 1997: treatment effect: .07 (.11)

- How do we square these results with the larger impact on employment in the US?
- How does the observed effect accord with a decision making model?
- What happened to the budget constraint?
Unlike the US EITC the credit is based on net (rather than gross) family income

- interaction with other benefits and taxes matter (Figures)
Unlike the US EITC the credit is based on net (rather than gross) family income

- interaction with other benefits and taxes matter (Figures)
 - differing size of the ‘treatment’ across eligibles (Figures: effects on hours)
Unlike the US EITC the credit is based on net (rather than gross) family income

- interaction with other benefits and taxes matter (Figures)
 - differing size of the ‘treatment’ across eligibles (Figures: effects on hours)
- coincident reforms to Income Support (IS)
Interactions with other taxes and benefits in the UK

Unlike the US EITC the credit is based on net (rather than gross) family income

- interaction with other benefits and taxes matter (Figures))
 - differing size of the ‘treatment’ across eligibles (Figures: effects on hours)
- coincident reforms to Income Support (IS)
 - different direction of these reforms to US (figures)
Interactions with other taxes and benefits in the UK

Unlike the US EITC the credit is based on net (rather than gross) family income

- interaction with other benefits and taxes matter (Figures))
 - differing size of the ‘treatment’ across eligibles (Figures: effects on hours)
- coincident reforms to Income Support (IS)
 - different direction of these reforms to US (figures)
- not all eligibles take-up credit (Figure)
Interactions with other taxes and benefits in the UK

Unlike the US EITC the credit is based on net (rather than gross) family income

- interaction with other benefits and taxes matter (Figures)
 - differing size of the ‘treatment’ across eligibles (Figures: effects on hours)

- coincident reforms to Income Support (IS)
 - different direction of these reforms to US (figures)

- not all eligibles take-up credit (Figure)
 - stigma/information
Unlike the US EITC the credit is based on net (rather than gross) family income

- interaction with other benefits and taxes matter (Figures))
 - differing size of the ‘treatment’ across eligibles (Figures: effects on hours)

- coincident reforms to Income Support (IS)
 - different direction of these reforms to US (figures)

- not all eligibles take-up credit (Figure)
 - stigma/information
 - reduces marginal rates at higher incomes
Unlike the US EITC the credit is based on net (rather than gross) family income

- interaction with other benefits and taxes matter (Figures)
 - differing size of the ‘treatment’ across eligibles (Figures: effects on hours)
- coincident reforms to Income Support (IS)
 - different direction of these reforms to US (figures)
- not all eligibles take-up credit (Figure)
 - stigma/information
 - reduces marginal rates at higher incomes
 - average impact is ‘intention to treat’ parameter
What is missing in this simple experimental and quasi-experimental impact analyses?

- No basis for simulating policy reforms (ex-ante)
What is missing in this simple experimental and quasi-experimental impact analyses?

- No basis for simulating policy reforms (ex-ante)
- No analysis of intensive margin (hours of work) decisions
What is missing in this simple experimental and quasi-experimental impact analyses?

- No basis for simulating policy reforms (ex-ante)
- No analysis of intensive margin (hours of work) decisions
- No basis for analysing deadweight loss and optimality of tax reforms
What is missing in this simple experimental and quasi-experimental impact analyses?

- No basis for simulating policy reforms (ex-ante)
- No analysis of intensive margin (hours of work) decisions
- No basis for analysing deadweight loss and optimality of tax reforms
- No analysis of family labour supply decisions
What is missing in this simple experimental and quasi-experimental impact analyses?

- No basis for simulating policy reforms (ex-ante)
- No analysis of intensive margin (hours of work) decisions
- No basis for analysing deadweight loss and optimality of tax reforms
- No analysis of family labour supply decisions
- For this we need a model of work and hours decisions
What is missing in this simple experimental and quasi-experimental impact analyses?

- No basis for simulating policy reforms (ex-ante)
- No analysis of intensive margin (hours of work) decisions
- No basis for analysing deadweight loss and optimality of tax reforms
- No analysis of family labour supply decisions
- For this we need a model of work and hours decisions
 - A ‘structural’ model
Key features of the structural model

- budget constraint – tax/benefit interactions and take-up
Key features of the structural model

- budget constraint – tax/benefit interactions and take-up
- preferences – discrete hours; flexible utility specification
Key features of the structural model

- budget constraint – tax/benefit interactions and take-up
- preferences – discrete hours; flexible utility specification
- heterogeneity – demographics, ethnicity, etc; unobs. het.
Key features of the structural model

- budget constraint – tax/benefit interactions and take-up
- preferences – discrete hours; flexible utility specification
- heterogeneity – demographics, ethnicity, etc; unobs. het.
- fixed costs of work – obs. and unobs. het.
Key features of the structural model

- budget constraint – tax/benefit interactions and take-up
- preferences – discrete hours; flexible utility specification
- heterogeneity – demographics, ethnicity, etc; unobs. het.
- fixed costs of work – obs. and unobs. het.
- stigma/hassle costs – take-up versus eligibility; unobs. het.
Key features of the structural model

- budget constraint – tax/benefit interactions and take-up
- preferences – discrete hours; flexible utility specification
- heterogeneity – demographics, ethnicity, etc; unobs. het.
- fixed costs of work – obs. and unobs. het.
- stigma/hassle costs – take-up versus eligibility; unobs. het.
- childcare costs
Key features of the structural model

- budget constraint – tax/benefit interactions and take-up
- preferences – discrete hours; flexible utility specification
- heterogeneity – demographics, ethnicity, etc; unobs. het.
- fixed costs of work – obs. and unobs. het.
- stigma/hassle costs – take-up versus eligibility; unobs. het.
- childcare costs
 - mixed-multinomial specification across discrete choices over ranges of hours.
Preferences typically approximated by polynomials

\[U(y_h, h; X, \varepsilon) \]

- Model also allows for
Preferences typically approximated by polynomials

\[U(y_h, h; X, \varepsilon) \]

- Model also allows for
 - unobserved work-related fixed costs
Preferences typically approximated by polynomials

\[U(y_h, h; X, \varepsilon) \]

- Model also allows for
 - unobserved work-related fixed costs
 - childcare costs
Basic Model

Preferences typically approximated by polynomials

\[U(y_h, h; X, \varepsilon) \]

- Model also allows for
 - unobserved work-related fixed costs
 - childcare costs
 - programme participation ‘take-up’ costs
Preferences typically approximated by polynomials

\[U(y_h, h; X, \varepsilon) \]

- Model also allows for
 - unobserved work-related fixed costs
 - childcare costs
 - programme participation ‘take-up’ costs
 - observed and unobserved heterogeneity
Net Income schedule:

Budget constraint:

\[y_{hp} = wh + t(wh, I) - C_h + P\Psi(w, h, I) \]
\[= \tilde{y}_h + P\Psi(w, h, I) \]

the tax-credit payment function \(\Psi(w, h, I) \) depends on:

- earnings
Net Income schedule:

Budget constraint:

\[y_{hP} = wh + t(wh, I) - C_h + P\Psi(w, h, I) \]

\[= \tilde{y}_h + P\Psi(w, h, I) \]

the tax-credit payment function \(\Psi(w, h, I) \) depends on:

- earnings
- hours (through the hours condition of entitlement)
Net Income schedule:

Budget constraint:

\[y_{hP} = wh + t(wh, I) - C_h + P\Psi(w, h, I) \]
\[= \tilde{y}_h + P\Psi(w, h, I) \]

the tax-credit payment function \(\Psi(w, h, I) \) depends on:

- earnings
- hours (through the hours condition of entitlement)
- other income \(I \)
Net Income schedule:

Budget constraint:

\[y_{hp} = wh + t(wh, l) - C_h + P\Psi(w, h, l) \]
\[= \tilde{y}_h + P\Psi(w, h, l) \]

the tax-credit payment function \(\Psi(w, h, l) \) depends on:

- earnings
- hours (through the hours condition of entitlement)
- other income \(I \)
- demographic characteristics \(X \)
Preferences and Take-up

Preferences:

\[U_P(h, \tilde{y}_h, P; X, \varepsilon) = \alpha_{11}(\tilde{y}_h + P\Psi)^2 + \alpha_{22}h^2 + \alpha_{12}(\tilde{y}_h + P\Psi)h + \beta_1(\tilde{y}_h + P\Psi) + \beta_2h + \varepsilon_hP - P\eta \]

\[= U(h, \tilde{y}_h + P\Psi; X, \varepsilon) - P\eta \]

where the 'cost' of receiving in-work support is given by:

\[\eta = X_\eta \beta_\eta + \varepsilon_\eta \]

- The introduction of these additional terms is important in evaluation of a reform which increases generosity.
Claim credit Ψ in WFTC at hours h_j if

$$U_P(h, \tilde{y}_h + \Psi, P = 1; X, \varepsilon) > U_P(h, \tilde{y}_h, P = 0; X, \varepsilon)$$

utility cost among those who choose to claim WFTC must not exceed the utility gain from receipt of WFTC transfer income relative to non-receipt. Placing a bound on $\varepsilon_\eta < \Omega_U$ where

$$\Omega_U = U(h, \tilde{y}_h + \Psi, P = 1; X, \varepsilon) - U(h, \tilde{y}_h; X, \varepsilon) - X_\eta \beta_\eta$$
Assume stochastic relationship between total hours of childcare and maternal hours of work

\[h_c = 1[h > 0].1[\epsilon_c < -\beta_c h](\beta_c h + \epsilon_c) \]

Child care expenditure is given by \(p_c h_c \), where \(p_c \sim F_c \) is the discretised distribution of childcare prices

- support probabilities for \(F_c \) are estimated
Assume stochastic relationship between total hours of childcare and maternal hours of work

\[h_c = 1[h > 0].1[\varepsilon_c < -\beta_c h](\beta_c h + \varepsilon_c) \]

Child care expenditure is given by \(p_c h_c \), where \(p_c \sim F_c \) is the discretised distribution of childcare prices

- support probabilities for \(F_c \) are estimated
- both \(F_c \) and relationship above vary with \(X_c \)
Choice probabilities

These preferences, fixed costs, childcare costs and stigma cost expressions provide the choice probabilities:

\[
\Pr[h = h_j, P = p|X, ge) = \frac{\exp\{U(h_j, \tilde{y}_{h_j} + p\Psi, P = p; X, \varepsilon)\}}{\sum_k \max[\exp\{U(h_k, \tilde{y}_{h_k}, 0; X, \varepsilon)\}, E_{h_k} \exp\{U(h_k, \tilde{y}_{h_k} + \Psi, 1; X, \varepsilon)\}]} \]

where \(E_h\) is an indicator equal to unity if the individual is entitled to in-work tax credit.

- From which we construct the sample log likelihood.
Data from 1995-2003 (Family Resources Survey)
Data from 1995-2003 (Family Resources Survey)

- 1995-1999: pre-reform estimation data (ex-ante)
Data from 1995-2003 (Family Resources Survey)

- 1995-1999: pre-reform estimation data (ex-ante)
Data from 1995-2003 (Family Resources Survey)
- 1995-1999: pre-reform estimation data (ex-ante)

Variation: geographic, time, precise rules.
Data from 1995-2003 (Family Resources Survey)

- 1995-1999: pre-reform estimation data (ex-ante)

Variation: geographic, time, precise rules.

- Tax and benefit system (accurate income/benefits)
Estimation

- Data from 1995-2003 (Family Resources Survey)
 - 1995-1999: pre-reform estimation data (ex-ante)

- Variation: geographic, time, precise rules.
 - Tax and benefit system (accurate income/benefits)
 - Housing costs/benefits (local variation)
Data from 1995-2003 (Family Resources Survey)

- 1995-1999: pre-reform estimation data (ex-ante)

Variation: geographic, time, precise rules.

- Tax and benefit system (accurate income/benefits)
- Housing costs/benefits (local variation)
- Local taxation
Estimation

- Data from 1995-2003 (Family Resources Survey)
 - 1995-1999: pre-reform estimation data (ex-ante)

- Variation: geographic, time, precise rules.
 - Tax and benefit system (accurate income/benefits)
 - Housing costs/benefits (local variation)
 - Local taxation

- Jointly estimate wages, take-up, childcare and preferences by simulated maximum likelihood:
Estimation

- Data from 1995-2003 (Family Resources Survey)
 - 1995-1999: pre-reform estimation data (ex-ante)
- Variation: geographic, time, precise rules.
 - Tax and benefit system (accurate income/benefits)
 - Housing costs/benefits (local variation)
 - Local taxation
- Jointly estimate wages, take-up, childcare and preferences by simulated maximum likelihood:
 - Incorporate detailed/accurate model of tax and transfer system
Estimation

- Data from 1995-2003 (Family Resources Survey)
 - 1995-1999: pre-reform estimation data (ex-ante)
- Variation: geographic, time, precise rules.
 - Tax and benefit system (accurate income/benefits)
 - Housing costs/benefits (local variation)
 - Local taxation
- Jointly estimate wages, take-up, childcare and preferences by simulated maximum likelihood:
 - Incorporate detailed/accurate model of tax and transfer system
 - Unobserved heterogeneity follows normal distribution with integrals approximated with 400 quasi-random draws
Robustness of the ex-ante evaluation model:

- Compare structural evaluation model (simulated likelihood) estimated on pre-reform data to quasi-experimental ex-post evaluation
Robustness of the ex-ante evaluation model:

- Compare structural evaluation model (simulated likelihood) estimated on pre-reform data to quasi-experimental ex-post evaluation
- The idea is to simulate the quasi-experimental estimate (moment)
The simulated diff-in-diff parameter from the structural evaluation model is precise and does not differ significantly from the diff-in-diff estimate.
The simulated diff-in-diff parameter from the structural evaluation model is precise and does not differ significantly from the diff-in-diff estimate.

Compare simulated diff-in-diff moment with diff-in-diff.
Evaluation of the ex-ante model

- The simulated diff-in-diff parameter from the structural evaluation model is precise and does not differ significantly from the diff-in-diff estimate
- Compare simulated diff-in-diff moment with diff-in-diff
 - .29 (.73), chi-square p-value .57
Evaluation of the ex-ante model

- The simulated diff-in-diff parameter from the structural evaluation model is precise and does not differ significantly from the diff-in-diff estimate.
- Compare simulated diff-in-diff moment with diff-in-diff .29 (.73), chi-square p-value .57
- Consider additional moments
The simulated diff-in-diff parameter from the structural evaluation model is precise and does not differ significantly from the diff-in-diff estimate.

- Compare simulated diff-in-diff moment with diff-in-diff

 \[.29 (.73), \text{chi-square p-value} .57 \]

- Consider additional moments

- education: low education: 0.33 (.41)
Evaluation of the ex-ante model

- The simulated diff-in-diff parameter from the structural evaluation model is precise and does not differ significantly from the diff-in-diff estimate.
- Compare simulated diff-in-diff moment with diff-in-diff:
 - .29 (.73), chi-square p-value .57
- Consider additional moments:
 - education: low education: 0.33 (.41)
 - youngest child interaction
Evaluation of the ex-ante model

- The simulated diff-in-diff parameter from the structural evaluation model is precise and does not differ significantly from the diff-in-diff estimate
- Compare simulated diff-in-diff moment with diff-in-diff
 - .29 (.73), chi-square p-value .57
- Consider additional moments
 - education: low education: 0.33 (.41)
 - youngest child interaction
 - Youngest child aged < 5: .59 (.51)
Evaluation of the ex-ante model

- The simulated diff-in-diff parameter from the structural evaluation model is precise and does not differ significantly from the diff-in-diff estimate.
- Compare simulated diff-in-diff moment with diff-in-diff:
 - 0.29 (.73), chi-square p-value .57
- Consider additional moments:
 - education: low education: 0.33 (.41)
 - youngest child interaction:
 - Youngest child aged < 5: .59 (.51)
 - Youngest child aged 5-10: .31 (.35)
WFTC impact

- ‘relatively small average treatment on treated effect’ appears to be due to interaction of WFTC with other taxes/benefits and rise in Income Support.
WFTC impact

- ‘relatively small average treatment on treated effect’ appears to be due to interaction of WFTC with other taxes/benefits and rise in Income Support.
- rather than ‘small’ response elasticities:
WFTC impact

- ‘relatively small average treatment on treated effect’ appears to be due to interaction of WFTC with other taxes/benefits and rise in Income Support.
- rather than ‘small’ response elasticities:
- extensive elasticity .91 (.13)
WFTC impact

- ‘relatively small average treatment on treated effect’ appears to be due to interaction of WFTC with other taxes/benefits and rise in Income Support.
- rather than ‘small’ response elasticities:
 - extensive elasticity .91 (.13)
 - .635 with youngest child aged <5
 - 1.13 with youngest child aged >10
‘relatively small average treatment on treated effect’ appears to be due to interaction of WFTC with other taxes/benefits and rise in Income Support. rather than ‘small’ response elasticities:

- extensive elasticity 0.91 (0.13)
- 0.635 with youngest child aged <5
- 0.935 with youngest child aged 5-10
‘relatively small average treatment on treated effect’ appears to be due to interaction of WFTC with other taxes/benefits and rise in Income Support.

rather than ‘small’ response elasticities:

- extensive elasticity .91 (.13)
- .635 with youngest child aged <5
- .935 with youngest child aged 5-10
- 1.13 with youngest child aged >10
WFTC impact

- ‘relatively small average treatment on treated effect’ appears to be due to interaction of WFTC with other taxes/benefits and rise in Income Support.
- rather than ‘small’ response elasticities:
 - extensive elasticity .91 (.13)
 - .635 with youngest child aged <5
 - .935 with youngest child aged 5-10
 - 1.13 with youngest child aged >10
 - intensive elasticity .31 (.09)
Is the WFTC design ‘optimal’?

Note that recent insights from optimal tax theory show some negative marginal tax rates can be an optimal design.
Is the WFTC design ‘optimal’?

- Note that recent insights from optimal tax theory show some negative marginal tax rates can be an optimal design
 - more generally can have lower rates at lower earnings
Is the WFTC design ‘optimal’?

- Note that recent insights from optimal tax theory show some negative marginal tax rates can be an optimal design
 - more generally can have lower rates at lower earnings
- Labour supply estimation suggest extensive margin is more responsive to incentives than intensive margin
Is the WFTC design ‘optimal’?

- Note that recent insights from optimal tax theory show some negative marginal tax rates can be an optimal design
 - more generally can have lower rates at lower earnings
- Labour supply estimation suggest extensive margin is more responsive to incentives than intensive margin
 - at least for certain household types
Is the WFTC design ‘optimal’?

- Note that recent insights from optimal tax theory show some negative marginal tax rates can be an optimal design
 - more generally can have lower rates at lower earnings
- Labour supply estimation suggest extensive margin is more responsive to incentives than intensive margin
 - at least for certain household types
 - this turns out to be a key observation for tax design
Focus on the extensive margin and the use of work conditions:

Some related literature

Focus on the extensive margin and the use of work conditions:

- Immervol et. al. (2006) implement Saez (2002) and find tax-credits could be optimal for a wide set of economies.
Some related literature

Focus on the extensive margin and the use of work conditions:

- Immervol et. al. (2006) implement Saez (2002) and find tax-credits could be optimal for a wide set of economies.

- As part of the Mirrlees Review; Brewer, Shephard and Saez (2009) also apply this approach (see also commentaries by Moffitt, by Laroque and by Hoynes).
Some related literature

Focus on the extensive margin and the use of work conditions:

- Immervol et al. (2006) implement Saez (2002) and find tax-credits could be optimal for a wide set of economies.

- As part of the Mirrlees Review; Brewer, Shephard and Saez (2009) also apply this approach (see also commentaries by Moffitt, by Laroque and by Hoynes).

- This paper examines the robustness of the empirical specification and looks deeper at: tax rate/credit schedule, hours-contingent and age-contingent designs.
Assume we want to redistribute ‘£R’ to low ed. lone parents, what is the ‘optimal’ way to do this?
Assume we want to redistribute ‘£R’ to low ed. lone parents, what is the ‘optimal’ way to do this?

Recover optimal tax/credit schedule in terms of earnings
Assume we want to redistribute ‘£R’ to low ed. lone parents, what is the ‘optimal’ way to do this?

- Recover optimal tax/credit schedule in terms of earnings
- Use Diamond-Saez approximation in terms of extensive and intensive elasticities at different earnings

Given elasticities at the extensive and intensive margins, we can pose the question:

is the WFTC expansion ‘optimal’ for reasonable social welfare weights?
Assume we want to redistribute ‘£R’ to low ed. lone parents, what is the ‘optimal’ way to do this?

- Recover optimal tax/credit schedule in terms of earnings
- Use Diamond-Saez approximation in terms of extensive and intensive elasticities at different earnings
- Also complete Mirrlees optimal tax computation
Assume we want to redistribute ‘£R’ to low ed. lone parents, what is the ‘optimal’ way to do this?

Recover optimal tax/credit schedule in terms of earnings

use Diamond-Saez approximation in terms of extensive and intensive elasticities at different earnings

also complete Mirrlees optimal tax computation

Given elasticities at extensive and intensive margin, we can pose the question:
Assume we want to redistribute ‘£R’ to low ed. lone parents, what is the ‘optimal’ way to do this?

Recover optimal tax/credit schedule in terms of earnings

use Diamond-Saez approximation in terms of extensive and intensive elasticities at different earnings

also complete Mirrlees optimal tax computation

Given elasticities at extensive and intensive margin, we can pose the question:

is the WFTC expansion ‘optimal’ for reasonable social welfare weights?
Suppose we distinguish between earnings groups
Simplified optimality results

- Suppose we distinguish between earnings groups
- ‘no’ earners: group 0
Simplified optimality results

- Suppose we distinguish between earnings groups
- ‘no’ earners: group 0
- ‘higher’ earners groups $i = 1, 2, \ldots$
Suppose we distinguish between earnings groups

- ‘no’ earners: group 0
- ‘higher’ earners groups $i = 1, 2, \ldots$

Suppose the social welfare weight g is higher for group 0, and monotonically decreasing.
Simplified optimality results

- Suppose we distinguish between earnings groups
- ‘no’ earners: group 0
- ‘higher’ earners groups $i = 1, 2, \ldots$
- Suppose the social welfare weight g is higher for group 0, and monotonically decreasing
- Choose taxes (and transfers) T to maximise welfare
Optimal design gives:

\[
\frac{T_i - T_0}{c_i - c_0} = \frac{1 - g_i}{\zeta_i}
\]

where

- \(\zeta_i\) is the labour supply elasticity (intensive margin)
Optimal design gives:

\[
\frac{T_i - T_0}{c_i - c_0} = \frac{1 - g_i}{\zeta_i}
\]

where

- \(\zeta_i \) is the labour supply elasticity (intensive margin)
- \(- T_i \) is the subsidy given to group \(i \)
Optimal design gives:

\[
\frac{T_i - T_0}{c_i - c_0} = \frac{1 - g_i}{\zeta_i}
\]

where

- \(\zeta_i\) is the labour supply elasticity (intensive margin)
- \(-T_i\) is the subsidy given to group \(i\)
- \(c_i\) is the net of tax income for that group
Optimal design gives:

\[
\frac{T_i - T_0}{c_i - c_0} = \frac{1 - g_i}{\zeta_i}
\]

where

- \(\zeta_i\) is the labour supply elasticity (intensive margin)
- \(-T_i\) is the subsidy given to group \(i\)
- \(c_i\) is the net of tax income for that group
- \(g_i\) is the social welfare weight for group \(i\) and \(g_0 > 1\), with the weights summing to unity.
The intensive and extensive margin

Suppose we now introduce different levels of earnings with an intensive and extensive margin

\[
\frac{T_i - T_{i-1}}{c_i - c_{i-1}} = \frac{1}{\zeta_i} \sum_{j=1}^{l} (1 - f_i)
\]

where

- \(f_i = g_i + \eta_i k \)
The intensive and extensive margin

Suppose we now introduce different levels of earnings with an intensive and extensive margin

\[
\frac{T_i - T_{i-1}}{c_i - c_{i-1}} = \frac{1}{\zeta_i} \sum_{j=1}^{l} (1 - f_i)
\]

where

- \(f_i = g_i + \eta_i k \)
- and \(\eta_i \) is the extensive labour supply elasticity
Suppose we now introduce different levels of earnings with an intensive and extensive margin

\[
\frac{T_i - T_{i-1}}{c_i - c_{i-1}} = \frac{1}{\zeta_i} \sum_{j=1}^{l} (1 - f_i)
\]

where

- \(f_i = g_i + \eta_i k \)
- and \(\eta_i \) is the extensive labour supply elasticity
- a ‘large’ extensive elasticity can ‘turn around’ the impact of social weights
The intensive and extensive margin

Suppose we now introduce different levels of earnings with an intensive and extensive margin

\[
\frac{T_i - T_{i-1}}{c_i - c_{i-1}} = \frac{1}{\zeta_i} \sum_{j=1}^{I} (1 - f_i)
\]

where

- \(f_i = g_i + \eta_i k \)
- and \(\eta_i \) is the extensive labour supply elasticity
- a 'large' extensive elasticity can 'turn around' the impact of social weights
 - implying a higher transfer to low wage workers than to those out of work – an EITC
The intensive and extensive margin

Suppose we now introduce different levels of earnings with an intensive and extensive margin

$$\frac{T_i - T_{i-1}}{c_i - c_{i-1}} = \frac{1}{\zeta_i} \sum_{j=1}^{l} (1 - f_i)$$

where

- $f_i = g_i + \eta_i k$
- and η_i is the extensive labour supply elasticity
- a ‘large’ extensive elasticity can ‘turn around’ the impact of social weights
 - implying a higher transfer to low wage workers than to those out of work – an EITC
- Buble Figures
Social welfare, for individuals of type X, ε

$$W(T) = \int_{X,\varepsilon} \int_{\varepsilon} Y(U(c(h^*; T, X, \varepsilon), h^*; X, \varepsilon, \varepsilon)) dF(\varepsilon) dG(X, \varepsilon)$$

where Y is the ‘social welfare’ transformation.

The tax structure $T(\cdot)$ is chosen to maximise W, subject to:

$$\int_{X,\varepsilon} \int_{\varepsilon} T(wh^*, h^*; X) dF(\varepsilon) dG(X, \varepsilon) \geq \overline{T}(\equiv -R).$$

for a given R.
Control preference for equality by transformation function:

$$Y(U; \theta) = \frac{(\exp U)^\theta - 1}{\theta}$$

When θ is negative, the function favors the equality of utilities. If $\theta < 0$ then conditional on X and ϵ the integral over state specific errors is given by:

$$\frac{1}{\theta} \left[\Gamma(1 - \theta) \times \left(\sum_{h \in \mathcal{H}} \exp(u(c(h; T, X, \epsilon), h; X, \epsilon)) \right)^\theta - 1 \right]$$

where Γ is the gamma function.

- Figures of Redigned Tax Schedules
Change transfer/tax rate structure to match lessons from ‘new’ optimal tax analysis and empirical evidence:

- Lower marginal rates at the bottom means-testing should be less aggressive at least for some groups.
- Age-based taxation distinguishes by age of youngest child for mothers/parents.
- Hours rules? – at full time, welfare gains depend on monitoring.
- Impact of reforms on PTRs and EMTRs (MRII - Figures).

Blundell (University College London)

Uppsala Tax Course

March 2010
- Change transfer/tax rate structure to match lessons from ‘new’ optimal tax analysis and empirical evidence:
- Lower marginal rates at the bottom
- Change transfer/tax rate structure to match lessons from ‘new’ optimal tax analysis and empirical evidence:
- Lower marginal rates at the bottom
 - means-testing should be less aggressive
- Change transfer/tax rate structure to match lessons from ‘new’ optimal tax analysis and empirical evidence:
 - Lower marginal rates at the bottom
 - means-testing should be less aggressive
 - at least for some groups =>
• Change transfer/tax rate structure to match lessons from ‘new’ optimal tax analysis and empirical evidence:
 • Lower marginal rates at the bottom
 • means-testing should be less aggressive
 • at least for some groups \Rightarrow
 • Age-based taxation
- Change transfer/tax rate structure to match lessons from ‘new’ optimal tax analysis and empirical evidence:
 - Lower marginal rates at the bottom
 - means-testing should be less aggressive
 - at least for some groups \Rightarrow
 - Age-based taxation
 - distinguish by age of youngest child for mothers/parents
- Change transfer/tax rate structure to match lessons from ‘new’ optimal tax analysis and empirical evidence:
 - Lower marginal rates at the bottom
 - means-testing should be less aggressive
 - at least for some groups \(\Rightarrow \)
 - Age-based taxation
 - distinguish by age of youngest child for mothers/parents
 - Hours rules? – at full time, welfare gains depend on monitoring
- Change transfer/tax rate structure to match lessons from ‘new’ optimal tax analysis and empirical evidence:
 - Lower marginal rates at the bottom
 - means-testing should be less aggressive
 - at least for some groups \implies
 - Age-based taxation
 - distinguish by age of youngest child for mothers/parents
- Hours rules? – at full time, welfare gains depend on monitoring
- Impact of reforms on PTRs and EMTRs (MRII - Figures)
Resolved the US-EITC, UK-WFTC puzzle
Implications

- Resolved the US-EITC, UK-WFTC puzzle
- line-up structural model with quasi-experiment treatment effects
• Resolved the US-EITC, UK-WFTC puzzle
• line-up structural model with quasi-experiment treatment effects
• Given the estimated elasticities, some form of tax credit schedule for families with children looks optimal overall
Resolved the US-EITC, UK-WFTC puzzle
line-up structural model with quasi-experiment treatment effects
Given the estimated elasticities, some form of tax credit schedule for families with children looks optimal overall
But....
Implications

- Age of children matter
Implications

- Age of children matter
- only reduce marginal tax rates on participation for parents with children of school age
Age of children matter

only reduce marginal tax rates on participation for parents with children of school age

Hours rules do not always look optimal even if achievable
- Age of children matter
- only reduce marginal tax rates on participation for parents with children of school age
- Hours rules do not always look optimal even if achievable
- no hours conditioning for mothers with youngest child less than 5
Implications

- Age of children matter
- only reduce marginal tax rates on participation for parents with children of school age
- Hours rules do not always look optimal even if achievable
- no hours conditioning for mothers with youngest child less than 5
- increases with age of youngest child
Implications

- Age of children matter
- only reduce marginal tax rates on participation for parents with children of school age
- Hours rules do not always look optimal even if achievable
- no hours conditioning for mothers with youngest child less than 5
- increases with age of youngest child
- a type of dynamic incentive
Further Issues: Other Margins, Dynamics and Families

- Top Rates, Effort and Productivity
Further Issues: Other Margins, Dynamics and Families

- Top Rates, Effort and Productivity
- Work experience and wages?

- Gladden and Tamer (2000, 2006)
- Grogger (2005)

Indeed what is the program impact on gross wages?

What of couples labour supply decisions?

An impact on fertility and family formation?
Further Issues: Other Margins, Dynamics and Families

- Top Rates, Effort and Productivity
- Work experience and wages?
 - Gladden and Tamer (2000, 2006)
Further Issues: Other Margins, Dynamics and Families

- Top Rates, Effort and Productivity
- Work experience and wages?
 - Gladden and Tamer (2000, 2006)
 - Grogger (2005)
Further Issues: Other Margins, Dynamics and Families

- Top Rates, Effort and Productivity
- Work experience and wages?
 - Gladden and Tamer (2000, 2006)
 - Grogger (2005)
Further Issues: Other Margins, Dynamics and Families

- Top Rates, Effort and Productivity
- Work experience and wages?
 - Gladden and Tamer (2000, 2006)
 - Grogger (2005)
- Indeed what is the program impact on gross wages?
Further Issues: Other Margins, Dynamics and Families

- Top Rates, Effort and Productivity
- Work experience and wages?
 - Gladden and Tamer (2000, 2006)
 - Grogger (2005)
- Indeed what is the program impact on gross wages?
- What of couples labour supply decisions?
Further Issues: Other Margins, Dynamics and Families

- Top Rates, Effort and Productivity
- Work experience and wages?
 - Gladden and Tamer (2000, 2006)
 - Grogger (2005)
- Indeed what is the program impact on gross wages?
- What of couples labour supply decisions?
 - targeting in collective labour supply models
Further Issues: Other Margins, Dynamics and Families

- Top Rates, Effort and Productivity
- Work experience and wages?
 - Gladden and Tamer (2000, 2006)
 - Grogger (2005)
- Indeed what is the program impact on gross wages?
- What of couples labour supply decisions?
 - targeting in collective labour supply models
- An impact on fertility and family formation?
High marginal tax rates in the phase-out region provide disincentive to increase work (effort or wage rates) for those already in the labor market.
High marginal tax rates in the phase-out region provide disincentive to increase work (effort or wage rates) for those already in the labor market.

Family income based tax credit decreases the incentives to enter the labor market for some secondary earners (lower earning parent in married couple).
High marginal tax rates in the phase-out region provide disincentive to increase work (effort or wage rates) for those already in the labor market.

Family income based tax credit decreases the incentives to enter the labor market for some secondary earners (lower earning parent in married couple).

Research finds evidence of these effects,
Efficiency – Some caveats

- High marginal tax rates in the phase-out region provide disincentive to increase work (effort or wage rates) for those already in the labor market.
- Family income based tax credit decreases the incentives to enter the labor market for some secondary earners (lower earning parent in married couple).
- Research finds evidence of these effects,
- Should tax credits be individualised – like wage subsidies?
High marginal tax rates in the phase-out region provide disincentive to increase work (effort or wage rates) for those already in the labor market.

Family income based tax credit decreases the incentives to enter the labor market for some secondary earners (lower earning parent in married couple).

Research finds evidence of these effects,

Should tax credits be individualised – like wage subsidies?

Although the magnitude is small – a large group.
But how should we best model family labour supply behaviour:

- Unitary decision making model
But how should we best model family labour supply behaviour:

- Unitary decision making model
- Single utility model?
But how should we best model family labour supply behaviour:

- Unitary decision making model
 - Single utility model?
- Collective allocation model
But how should we best model family labour supply behaviour:

- Unitary decision making model
 - Single utility model?
- Collective allocation model
 - sharing rule is identified up to a constant
Welfare and Tax Reform for Couples?

But how should we best model family labour supply behaviour:

- Unitary decision making model
 - Single utility model?
- Collective allocation model
 - sharing rule is identified up to a constant
 - how do optimal tax results?
Welfare and Tax Reform for Couples?

- Disincentive for partner in couple
Welfare and Tax Reform for Couples?

- Disincentive for partner in couple
- Optimality results suggest
Welfare and Tax Reform for Couples?

- Disincentive for partner in couple
- Optimality results suggest
 - tax rate on second earner should be decreasing in earnings of first earner

Blundell (University College London)
Disincentive for partner in couple

Optimality results suggest

- tax rate on second earner should be decreasing in earnings of first earner
- more need to redistribute among second earners if first earner has low pay
Disincentive for partner in couple

Optimality results suggest
 - tax rate on second earner should be decreasing in earnings of first earner
 - more need to redistribute among second earners if first earner has low pay

Is this finding generalisable?
Disincentive for partner in couple

Optimality results suggest

- tax rate on second earner should be decreasing in earnings of first earner
- more need to redistribute among second earners if first earner has low pay

Is this finding generalisable?

- collective model . . . - dampens the effect
Optimal static design but dynamic incentives for self-sufficiency?

- High marginal tax rates (in the phase-out region) provide disincentive to increase work (or wage rates/productivity).
Optimal static design but dynamic incentives for self-sufficiency?

- High marginal tax rates (in the phase-out region) provide disincentive to increase work (or wage rates/productivity).
- An alternative is time-limited conditional programs
Optimal static design but dynamic incentives for self-sufficiency?

- High marginal tax rates (in the phase-out region) provide disincentive to increase work (or wage rates/productivity).
- An alternative is time-limited conditional programs
 - Conditional on some time spent on welfare or UI
Optimal static design but dynamic incentives for self-sufficiency?

- High marginal tax rates (in the phase-out region) provide disincentive to increase work (or wage rates/productivity).
- An alternative is time-limited conditional programs
 - Conditional on some time spent on welfare or UI
 - Given to the individual through a time-limited conditional tax-credit
Optimal static design but dynamic incentives for self-sufficiency?

- High marginal tax rates (in the phase-out region) provide disincentive to increase work (or wage rates/productivity).
- An alternative is time-limited conditional programs
 - Conditional on some time spent on welfare or UI
 - Given to the individual through a time-limited conditional tax-credit
 - Given to the firm through a time-limited conditional wage subsidy
High marginal tax rates (in the phase-out region) provide disincentive to increase work (or wage rates/productivity).

An alternative is time-limited conditional programs
- Conditional on some time spent on welfare or UI
- Given to the individual through a time-limited conditional tax-credit
- Given to the firm through a time-limited conditional wage subsidy

Canadian Self-Sufficiency Project, example of the first
eligibility depends on income, children and work
Canadian Self Sufficiency Program

- eligibility depends on income, children and work
- eligibility depends on 12 months welfare receipt
Canadian Self Sufficiency Program

- eligibility depends on income, children and work
- eligibility depends on 12 months welfare receipt
- eligibility depends on finding a full-time job (30 hour per week)
Canadian Self Sufficiency Program

- eligibility depends on income, children and work
- eligibility depends on 12 months welfare receipt
- eligibility depends on finding a full-time job (30 hour per week)
- time limited receipt to 36 months after first eligible
But what of more dynamic effects?

- Longer term effects on employment?
But what of more dynamic effects?

- Longer term effects on employment?
- On earnings?
But what of more dynamic effects?

- Longer term effects on employment?
- On earnings?
- On hourly wages?
In SSP the earnings and employment of the treatment group line up with control group after time limit is exhausted.
• In SSP the earnings and employment of the treatment group line up with control group after time limit is exhausted
• Little evidence of employment enhancement or wage progression
- In SSP the earnings and employment of the treatment group line up with control group after time limit is exhausted
- Little evidence of employment enhancement or wage progression
- See Blundell and Moffitt (2007), ….
In SSP the earnings and employment of the treatment group line up with control group after time limit is exhausted.

Little evidence of employment enhancement or wage progression.

See Blundell and Moffitt (2007),

Other results, Taber etc, UK ERA, show some progression but quite small.
Follow hours and employment dynamics in BHPS before and after the FC and WFTC reforms
Follow hours and employment dynamics in BHPS before and after the FC and WFTC reforms

- Blundell, Brewer and Francesconi (JOLE 2008)
Follow hours and employment dynamics in BHPS before and after the FC and WFTC reforms

- Blundell, Brewer and Francesconi (JOLE 2008)
- adjustment is relatively rapid (during 1995-2005 period)
Follow hours and employment dynamics in BHPS before and after the FC and WFTC reforms

- Blundell, Brewer and Francesconi (JOLE 2008)
- adjustment is relatively rapid (during 1995-2005 period
- even though this involves movement across jobs
Follow hours and employment dynamics in BHPS before and after the FC and WFTC reforms

- Blundell, Brewer and Francesconi (JOLE 2008)
- Adjustment is relatively rapid (during 1995-2005 period)
- Even though this involves movement across jobs
- Little evidence of downward pressure on wages
Follow hours and employment dynamics in BHPS before and after the FC and WFTC reforms

- Blundell, Brewer and Francesconi (JOLE 2008)
- adjustment is relatively rapid (during 1995-2005 period)
- even though this involves movement across jobs
- little evidence of downward pressure on wages

Introduce a job-offer probability, varying over the cycle
Follow hours and employment dynamics in BHPS before and after the FC and WFTC reforms

- Blundell, Brewer and Francesconi (JOLE 2008)
 - adjustment is relatively rapid (during 1995-2005 period
 - even though this involves movement across jobs
 - little evidence of downward pressure on wages

Introduce a job-offer probability, varying over the cycle

- as in Blundell, Ham and Meghir (1998)
Follow hours and employment dynamics in BHPS before and after the FC and WFTC reforms

- Blundell, Brewer and Francesconi (JOLE 2008)
- adjustment is relatively rapid (during 1995-2005 period
- even though this involves movement across jobs
- little evidence of downward pressure on wages

Introduce a job-offer probability, varying over the cycle

- as in Blundell, Ham and Meghir (1998)
- and Rogerson (2008)
Follow hours and employment dynamics in BHPS before and after the FC and WFTC reforms

- Blundell, Brewer and Francesconi (JOLE 2008)
 - adjustment is relatively rapid (during 1995-2005 period)
 - even though this involves movement across jobs
 - little evidence of downward pressure on wages

- Introduce a job-offer probability, varying over the cycle
 - as in Blundell, Ham and Meghir (1998)
 - and Rogerson (2008)

- search model developed in Robin and Shephard (2008)
Time Limited Conditional Programs

- Need to know more about earnings progression and experience effects among low wage workers
Time Limited Conditional Programs

Need to know more about earnings progression and experience effects among low wage workers

The combination of time limited tax-credits or wage subsidies conditional on a minimum spell on welfare or UI is common in welfare-to-work programs
Targeting: results and thoughts:

- Targeting:
Targeting: results and thoughts:

- Targeting:
- family income - family labour supply effects
Targeting: results and thoughts:

- Targeting:
- family income - family labour supply effects
- earnings - focuses on low skilled
Targeting: results and thoughts:

- Targeting:
- family income - family labour supply effects
- earnings - focuses on low skilled
- type – e.g. age, requires further eligibility
Targeting: results and thoughts:

- Targeting:
- family income - family labour supply effects
- earnings - focuses on low skilled
- type – e.g. age, requires further eligibility
- Human Capital incentives:
Targeting: results and thoughts:

- Targeting:
 - family income - family labour supply effects
 - earnings - focuses on low skilled
 - type – e.g. age, requires further eligibility
- Human Capital incentives:
 - on the job learning – passive or active
Targeting: results and thoughts:

- Targeting:
- family income - family labour supply effects
- earnings - focuses on low skilled
- type – e.g. age, requires further eligibility
- Human Capital incentives:
- on the job learning – passive or active
- Minimum Hours Limit:
Targeting: results and thoughts:

- Targeting:
 - family income - family labour supply effects
 - earnings - focuses on low skilled
 - type – e.g. age, requires further eligibility

- Human Capital incentives:
 - on the job learning – passive or active

- Minimum Hours Limit:
 - childcare/child supplement